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Abstract. The basic mathematical assumptions for autonomous linear kinetic equations for a
classical system are formulated, leading to the conclusion that if they are differential equations
on its phase space M , they are of at most second order. For open systems interacting with
a bath at canonical equilibrium they have the particular form of an equation of a generalized
Fokker–Planck type. We show that it is possible to obtain them as Liouville equations of
Hamiltonian dynamics on M with a particular non-commutative differential structure, provided
that certain conditions, geometric in character, are fulfilled. To this end, symplectic geometry
on M is developed in this context, and an outline of the required tensor analysis and differential
geometry is given. Certain questions as regards the possible mathematical interpretation of this
structure are also discussed.

1. Introduction

Achieving an understanding and description of the irreversible evolution of macroscopic
systems, presumably towards equilibrium states, is the aim of kinetic theory. This is
done by formulating appropriate kinetic equations giving the time evolution of the state
of the system which, loosely speaking, is assumed to be some probability measure on the
space of variables describing the system, which henceforth will be called its phase space.
Observables are assumed to be well-behaved phase-space functions and experimental results
refer to expectation values obtained via a bilinear (or sesquilinear) form on the cartesian
product of the spaces of states and observables. Thus at the very heart of kinetic theory
a probabilistic viewpoint is rooted, the precise interpretation of which is often a matter of
debate.

Theoretically speaking, kinetic equations are derived by following two different
procedures:

(i) stochastic argument methods, based on some presumably plausible assumptions on
the behaviour of a large number of microscopic events characterizing the system;

(ii) application of more or less systematic approximation schemes to the exact
microscopic dynamics of the system under consideration.

Typical examples for (i) are the Fokker–Planck and Kramers equations (see, e.g., [1],
ch VIII). The first refers to the probability distribution function (p.d.f.) of the velocity
of a heavy Brownian particle suspended in an equilibrium medium of light particles, and
the second refers to the p.d.f. of its phase-space position in the presence of an external
field. The basic assumptions for their derivations are that the microscopic dynamics of
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the Brownian particle are governed by Langevin’s equation and that its p.d.f. is that of a
Markovian diffusion process (see, e.g., [2], ch II, and [3]). This procedure usually leads
to model equations that are easier to study than the equations that are assumedto be
more fundamental following from exact dynamics via (ii). Mathematically speaking, this
procedure essentially replaces exact dynamics by stochastic differential equationswhich in
turn imply evolution equations for the p.d.f. of the system (see, e.g., [4], ch 4, and [5],
ch 9). Though these points are interesting and important from both the mathematical and
physical point of view, it seems that one has to know somehow the kinetic equation that
one wants to derive and modify accordingly the corresponding dynamics. Moreover the
modification is not easily interpreted physically (see the discussion following (3.1) below).
That is, it seems that there is no general prescription of how this modification has to be
carried out. In this paper, starting from mathematically totally different concepts, we arrive
at results that may be interpreted stochastically, at the same time giving hints on the nature
of such a general prescription (cf. the discussion following (3.1) below).

Typical examples for (ii) are the Boltzmann equation for dilute classical gases (or its
quantum weak-coupling analogue, Pauli’s equation) and the Landau and Balescu–Lenard
equations for neutral plasmas, as they are derived from Liouville’s (or von Neumann’s)
equations by using either iteration schemes and projection operator methods, or by using
their equivalent, the BBGKY hierarchy of equations truncated on the basis of physical
considerations†.

Although many specific equations can be derived by mathematically satisfactory (or even
rigorous) methods in some particular limit of appropriate parameters of the system (for a
survey see [33]), it is true that any approximation scheme, leading to satisfactory kinetic
equations for particular classes of systems, runs into trouble when one tries to extend it to
other systems and/or a higher order of approximation([12]; [13], section 5). For instance the
linearized Landau equation follows for spatially homogeneous plasmas as a second-order
approximation in the plasma parameter to the Liouville equation (plus some additional
assumptions which need not be discussed here). Any effort to find its generalization either
in a higher order of approximation and/or for inhomogeneous systems, runs into difficulties
(e.g. equations violating the positivity of the p.d.f. or having no H -theorem are obtained—
see, e.g., [14] in connection with [13], section 5), or involves highly ad hocsteps which are
sometimes hidden in the calculations (see, e.g., [15] in connection with section 2 below).

Although one may be tempted to accept that there is no reason to expect equations in
an approximate theory to share all the properties of the corresponding equations in the exact
theory, in kinetic theory things are more complicated since the exact theory in this case is
simply (classical or quantum) dynamics; however, as it stands, the microscopic dynamics of
a system with a very large number of degrees of freedom is useless as a macroscopic theory
since it does not incorporate irreversible evolution and its relation to a theory dealing with
macroscopically defined quantities is remote, or at least not straightforward. Moreover,
from what has been said above, the situation is even worse, since it often happens that
equations obtained at a lower level of approximation (e.g. with respect to expansion in
some parameter) exhibit the correct properties, which however disappear in any higher
level of approximation!‡

In our opinion this is an inevitable consequence of the philosophy underlying kinetic
theory, namely that irreversible evolutionis simply an approximation to the exact (classical

† See, e.g.: [6], sections 30, 41; [7], ch 20; [8], ch IX; [9], section 2.4; [10], sections 4.3, 4.6; [11], section VI.
‡ See, e.g., equations following from expansion of Liouville’s equation or the so-called generalized master equation
([10], section 2.3; [12], section 2; [13], section 5; [27]) in connection with the last paragraph of the next section.
See also [34] for expansions of the Boltzmann equation.
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or quantum) reversible dynamics. To put it differently, the aim of kinetic theory (the
description of macroscopic irreversible evolution) seems not to be compatiblewith its
assumed fundamental laws(reversible microscopic dynamics), at least in a straightforward
manner. Therefore it seems that a fundamentally different approach to kinetic theory may
not be worthless!

2. Mathematical assumptions underlying kinetic theory and their implications

As already mentioned, at the very root of kinetic theory there lies a probabilistic
interpretation. Using this as a motivation and in order to clarify the difficulties mentioned
in the previous section, we here describe the basic assumptions for a kinetic equation to
be, in principle, acceptable, and conditions under which an explicit general form can be
obtained. We restrict the discussion to linear, autonomouskinetic equations, which include
kinetic equations for the important class of open systems. To be more specific, we consider
classicalsystems, though similar results are known for quantum systems as well ([19], and
[16], theorem 4.2).

We make the following assumptions.

(i) The phase space M is a locally compact, Hausdorff topological space (e.g. the phase
space of a Hamiltonian system).

(ii) Observables A are in C(M,C), the space of complex-valued continuous functions
on M , having a finite limit at infinity.

(iii) States ` are positive linear functionals on the observables, their values `(A) giving
expectations. Since positivity of ` implies its boundedness in the supremum norm (see,
e.g., [21], pp 106, 107), states belong to C∗(M,C), the Banach dual with respect to this
norm, which is the space of (regular) complex Borel measures on M .

(iv) Kinetic equations for the observables have a well-posed initial-value problem,
i.e. uniqueness and continuous dependence of solutions on the initial data hold. Moreover,
expectation values are continuous in time. These properties imply that solutions of a
kinetic equation define strongly continuous semigroups of linear operators on the space
of observables and that the corresponding adjoint equation defines such a semigroup on the
state space†.

(v) The adjoint semigroup conserves positivity and normalization of the states, i.e. initial
probability measures retain their character for all positive times.

These plausible assumptions imply that the solutions of a kinetic equation for the
observables define a Markov semigroup, i.e. a strongly continuous, positivity- and
normalization-preserving one-parameter semigroup of operators on C(M,C) [27]. The
terminology stems from the fact that such semigroups are in one-to-one correspondence with
(time-homogeneous) stochastically continuous Markov processes described by a transition
probability distribution p(t, x, E), which for each t, x is a regular probability Borel measure
on M (see, e.g., [23], p 399, and [24], theorem 2.1, for an outline of a proof). If we further
assumethat M is an n-dimensional differential manifold, that the generator of the semigroup
is defined on C2-functions and that a Lindenberg-type condition holds,

lim
t→0+

p(t, x, E)

t
= χE(x) uniformly in x

† Strictly speaking, strong continuity of the latter holds on a smaller subspace, which however uniquely defines
the adjoint semigroup ([22], theorem 1.36).
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where χE is the characteristic function of E, then it can be proved that the kinetic equation
for observables (i.e. essentially the generator of the corresponding semigroup) has the form†

∂A

∂t
= αij (x) ∂i∂jA+ ai(x) ∂iA (2.1)

where αij , ai are continuous, αij is a non-negative definite matrix function and the
summation convention has been used, as it will be in the following work‡. Actually αij , ai

are related to the diffusion and drift coefficients associated with the corresponding Markov
process, given by the first two moments of p.

In many approaches in kinetic theory which lead to satisfactory kinetic equations of the
form (2.1), the following condition holds:

ai = bi +XiH (2.2)

where XiH is a Hamiltonianvector field. Moreover for open(classical or quantum) systems
with Hamiltonian H , in interaction with ‘baths’ in canonical equilibrium, the corresponding
Hamiltonian function is an integral of the unperturbed motion of the open system, and
therefore has in general the form −(H + F) with

{F,H } = 0 (2.3)

where { , } is the Poisson bracket, or the operator commutator, and the minus sign gives the
correct Hamiltonian equation when the system does not interact with the bath.

Moreover

∂jα
ij − bi = βαij ∂jH (2.4)

where β is proportional to the inverse temperature of the bath§. These conditions will be
used in section 4.

Substitution of (2.2)–(2.4) in (2.1) gives

∂A

∂t
= −{H + F,A} + ∂i(α

ij ∂jA)− βαij ∂jH ∂iA. (2.5)

The essential conclusion drawn from the above discussion is (in a somewhat non-
rigorous language) that linear autonomous kinetic equations for classical systems, which
are differential equations, are necessarily of at most second order with non-negative-definite
leading coefficients and vanishing zeroth-order terms(cf. equation (2.1))‖.

Since kinetic equations following from microscopic dynamics (see section 1) are often
differential equations, the above result severely restricts their form. In particular, all methods
based on power expansions of the solution of Liouville’s equation with respect to some
appropriate parameter usually lead to unacceptable results, since each approximation step
increases the order of the differential operator by one¶. In the rest of this paper, we will
present a different point of view, motivated by the discussion in the next section.

† See [25], theorem 5.3, for an outline of a proof, and [26], theorem XIII.53, for a partial generalization—the
Lévy–Khinchine formula.
‡ For detailed proofs and more precise formulation of the various conditions see [27].
§ See, e.g.: [13], proposition 4.1; [28], equation (2.19); [6], p 190; [18], equations (III.26) and (III.16) together
with (III.19); [32], equation (5.8).
‖ A corresponding result is also known for quantum systems [19, 17, 18, 20]. The special case of the Kramers–
Moyal expansion of the linearized Boltzmann equation has been considered in [34].
¶ See, e.g., [10], section 2.4, equation (2.199), and [1], p 215, section IX.6—particularly p 280.
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3. Non-commutative geometry and stochastic calculus

The usual approach to kinetic theory (method (ii) in section 1) follows the scheme

microscopic (Hamiltonian dynamics)
+ H⇒ kinetic equations.

some systematic approximation scheme

On the other hand, method (i) in section 1 involves no systematic approximation scheme
but a modification of the microscopic dynamics which now takes the form of stochastic
differential equations. In our opinion, the weak point in this case is that there is no general
method of choosing the microscopic stochastic differential equations. That is, it seems
necessary that one somehow knows the kinetic equation that one wants to derive and then
writes down the corresponding stochastic equation. However, it is not always clear how to
interpret the latter.

For instance it would be desirable to be able to derive by method (i) kinetic equations
obtained from microscopic Hamiltonian dynamics. However, the latter in general involve
operators with derivatives in the q-coordinates (see, e.g., [12], [13], [28], [32]). And it is a
standard fact that stochastic differential equations in phase space involving Wiener processes
Xt of the form(

dq
dp

)
=

(
Aq(q,p) dt + Fq(q,p) · dX

q
t

Ap(q,p) dt + Fp(q,p) · dX
p
t

)
(3.1)

imply such derivatives in the corresponding kinetic equation if Fq 6= 0 (see, e.g., [4], section
4.3.3). However, in many cases, one would like to interpret dq/dt simply as a velocity, all
dynamics being incorporated in dp/dt (e.g. the velocity of a Brownian particle), in which
case the above stochastic equation (3.1) is not easily interpreted physically.

In the following sections we outline another approachin which the Hamiltonian
character of microscopic dynamics is retained but, instead of approximation schemes, we
make the fundamental assumption that observables are now defined on a manifold with non-
commutative geometrical structure. As will be explained, this may be interpreted as a
stochastic dynamical structure, though it is not known whether or not this is necessary.
Nevertheless, the formulation developed in the next section is closely related to what may
be called a differential geometric approach to stochastic calculus†, though this relation will
be further explored in another paper.

The mathematicalmotivation for introducing non-commutative geometrical structure
stems from the fact that in the one-dimensional version of (3.1), Xt being a Wiener process
(i.e. Langevin’s equation)—the usual associative product of differential forms spanned by dt ,
dXt and functions of t , Xt—implies that stochastic differentiation does not obey Leibniz’s
rule for the product of two functions, due to the appearance of second derivatives in Itô’s
formula for the differential of such functions ([29], section 2—particularly equation (2.4)).
However, it is possible to define a modified non-commutativebut still associative product
of functions and differential forms such that Leibniz’s rule holds ([29], section 3, [31]).
This product induces a non-commutative differential calculus on the ordinary algebra of
functions of t , Xt ([30], section 2) via the basic commutation relations between functions
and 1-forms:

[dt, t] = [dt, Xt ] = 0 [dXt,Xt ] = 2γ dt (3.2)

where γ is the diffusion constant appearing in the usual Fokker–Planck equation obtained
from Langevin’s equation ([29], equation (3.16)). Equation (3.2) is readily generalized to a

† See, e.g., [37] and [38], particularly ch VI, and compare also with the approach in [39].
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multidimensional Wiener process:

[dt, t] = [dt, Xit ] = 0 [dXit , X
j
t ] = bij dt (3.3)

where bij is a symmetric bilinear form on the space of 1-forms†. Therefore (3.3) can be
rewritten more generally as

[df, g] = b(df, dg) dt (3.4)

for functions f, g of Xt , t and a symmetric, bilinear form with components bij in the
‘coordinates’ Xit and such that dt lies in its kernel, i.e. btt = bit = 0.

In view of the above discussion, we consider in the next section a (2n+1)-dimensional
manifold M × R and a differential calculus on a subalgebra A of the algebra of complex-
valued functions on M × R satisfying (3.4), and outline the formulation of extended
Hamiltonian dynamics as symplectic geometry onM×R. The basic result is that Liouville’s
equation for observables turns out to be of the form (2.1) with conditions (2.2), (2.4) having
a simple geometrical meaning. Therefore it may be interpreted as a kinetic equation on the
space of observables corresponding to a classical open system with phase spaceM .

The construction is coordinate independent, and presupposes the definition of such
fundamental concepts as vector fields, linear connections, symplectic structure and an
antisymmetric wedge product of forms on the differential calculus defined on A by (3.3), in
close analogy with the corresponding concepts of the ordinary differential geometry‡. The
derivation is formal in the sense that no systematic study of the representation theory of
(3.3) is made. Its already mentioned relation with stochastic calculus is a possibility, but it
is not clear whether or not others exist. A preliminary discussion of this problem is given
in section 6.

To make the presentation as transparent as possible, detailed calculations will be given
in a subsequent paper in which tensor analysis for the corresponding non-commutative
differential calculus is developed systematically. In fact this work constitutes only a first step
towards a systematic formulation of kinetic theory as Hamiltonian (symplectic) dynamics
in a phase space equipped with a non-commutative geometrical structure.

4. Non-commutative symplectic geometry

Let M be a 2n-dimensional manifold and A the algebra of smooth functions on M × R.
The coordinate on R will be denoted by t . Let �̃ be the universal differential envelope of
A, i.e. �̃ is a Z-graded algebra �̃ = ⊕

r∈Z �̃
r with �̃r = {0} for r < 0 and �̃0 = A. Then

there exists a linear mapping d: �̃ → �̃ of grade 1, which satisfies:

(i) d̃1 = 0, where 1 is the constant function with value 1;
(ii) d̃ satisfies the graded Leibniz rule, i.e. d̃(ψψ ′) = (d̃ψ) ψ ′ + (−1)rψ (d̃ψ ′), for

ψ ∈ �̃r ;
(iii) d̃2 = 0 on all of �̃; and
(iv) A and d̃A generate �̃.

The universal differential envelope (�̃, d̃) of A can be realized as follows (see [40]):
think of φ ∈ �̃r as a function on (M × R)r+1, where, for f ∈ �̃0 and a ∈ M × R, f (a) is

† This is implied by the fact that since d satisfies Leibniz’s rule, [dXit , X
j
t ] = [dXjt , X

i
t ], which in fact shows that

this commutator depends only on dXit , dXjt —see [30], section 3.
‡ For details on the systematic definition and presentation of general results in non-commutative geometry on a
commutative algebra, see [30], particularly sections 2 and 3.
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the value of f as an element of A on a, and for a0, . . . , ar+1 ∈ M × R and φ ∈ �̃r we set

(d̃φ) (a0, . . . , ar+1) :=
r+1∑
k=0

(−1)kφ(a0, . . . , ak−1, ak+1, . . . , ar+1).

Furthermore for φ ∈ �̃r , ψ ∈ �̃s and a0, . . . ar+s ∈ M × R we set

(φψ)(a0, . . . , ar+s) := [φ(a0, . . . , ar)][ψ(ar, . . . , ar+s)]

for any non-negative integers r, s. According to these rules

(f d̃g h)(a, b) = f (a)[g(b)− g(a)]h(b) (4.1)

and hence d̃f g 6= g d̃f . On the A-bimodule of 1-forms �̃1 we define a new product
•̃: �̃1 × �̃1 → �̃1 as follows: for α, β ∈ �̃1 and a, b ∈ M × R we set

(α •̃β)(a, b) := α(a, b) β(a, b).

Note that

(f1αf2) •̃ (g1βg2) = f1g1(α •̃ β)f2g2

and [d̃f, g] = d̃f •̃ d̃g. The universality of (�̃, d̃) is expressed by the property that, if (�, d)
is any differential algebra on A, then there is a graded-algebra homomorphism π: �̃ → �

of grade 0 such that π |�̃0 = idA and d ◦ π = π ◦ d̃ (cf. [30], section 3.1).
Let b̃: �̃1 × �̃1 → A be a symmetric left–right A-bilinear form, i.e. b̃(f1αf2, g1βg2) =

f1g1 b̃(α, β) f2g2 and assume that d̃t lies in the kernel of b̃. Also let I denote the differential
ideal of �̃ generated by α •̃β − d̃t b̃(α, β), then we set � := �̃/I and π : �̃ → � for
the canonical projection. Since I is a differential ideal the operator d: � → � given by
d = π ◦ d̃ is well defined, and because d̃t lies in the kernel of b̃, a symmetric left–right
A-bilinear form b: �×� → A is uniquely defined by b ◦ (π × π) = b̃.

Now set

df • dg := [df, g] (4.2)

and extend by left–right A-bilinearity; then it is easy to see that π(α̃ •̃ β̃) = α • β, where
α = π(α̃) and similarly for β. Obviously we have

α • β = dt b(α, β). (4.3)

This is just a special case of the general procedure used to relate (�̃, d̃) to any other
differential calculus (�, d) via an A-bimodule homomorphism π , with I = ker π and
induce • on �1 by using •̃ on �̃1 (cf. [30], section 3.2). Let ξ i, i = 1, . . . , 2n, be
local coordinates on M; then the elements of A can be written locally as functions of
t, ξ i, i = 1, . . . , 2n (see also section 6). If we set bij := b (dξ i, dξ j ) we find the
commutation relations (note that b (dt, dξ i) = b (dξ i, dt) = 0)

[dξ i, ξ j ] = dt bij (4.4)

[dt, t] = [dt, ξ i] = [dξ i, t] = 0. (4.5)

These are special cases of

[df, g] = dt b (df, dg). (4.6)

By using (4.2) and (4.5) we get for any f, g, h ∈ A that

df • dg • dh = 0. (4.7)

Applying d on a product of two functions and using (4.6) we obtain

d(fg) = (df ) g + (dg) f − dt b (df, dg). (4.8)
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Considering �1 as a right A-module, the dual module X is a left A-module. We write
〈X,α〉 for the duality contraction. If we make the definition

Xf := 〈X, df 〉 (4.9)

then we obtain from (4.8)

X(fg) = g(Xf )+ f (Xg)− b(df, dg)(Xt). (4.10)

The elements of X will be called vector fields. It can be proved that locally, as a left
A-module, X is free with basis given by ∂̂t , ∂1, . . . , ∂2n, where

∂i := ∂

∂ξ i
∂̂t := ∂t − 1

2
bij ∂i∂j . (4.11)

Thus for X ∈ X we have

X = X̂t ∂̂t +Xi ∂i (4.12)

with Xi := (Xξ i), X̂t := (Xt). More generally it can be proved that for any differential
calculus on a differential manifold, vector fields satisfying (4.7), i.e. elements of X , are
second-order differential operators without constant terms, like (4.12). Thus the name
second-order calculus is justified in this case (cf. section 6). As a further consequence, �1

is also free with the dual basis dt, dξ i, i = 1, . . . , 2n, and hence

df = dt ∂̂tf + dξ i ∂if. (4.13)

Using the bilinear form b we define a linear mapping from �1 to X , α 7→ αb via

〈αb, β〉 := b(α, β).

Note that (dt)b = 0 and (dξ i)b = bij ∂j .
Relations for forms of higher grade are obtained by applying d to equations (4.4) and

(4.5). We find

dξ i dξ j + dξ j dξ i = dt dbij dt dt = 0 dξ i dt + dt dξ i = 0. (4.14)

These are special cases of

df dg + dg df = dt db (df, dg) (4.15)

which is obtained by application of d to (4.6).
From (4.6) and (4.15) it follows that all deviations of the present differential calculus

from the classical differential calculus are proportional todt . Therefore and by the second
equation in (4.14) it is also clear that for formsdt φ, for anyφ ∈ � all calculations proceed
classically. This will help us to proceed more rapidly in what follows.

We extend the • product so that it acts between any 1-form α and an arbitrary form φ

by using the ‘insert’ operator of ordinary exterior calculus:

α • φ := dt αb φ. (4.16)

On the right-hand side everything is as in ordinary differential calculus because of the
presence of dt . It is not difficult to see that (cf. (4.2))

df • φ = [φ, f ].

For a 1-form α the combination α • acts as a derivation of the product of differential forms,
i.e.

α • (φψ) = (α • φ)ψ + φ(α • ψ).
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The elements u of X which vanish on t , i.e. u(t) = 0, are derivations of A and define a
left A-submodule X1 of X . With every u ∈ X1 we associate mappings Du: � → � defined
up to terms lying in dt � through the following relations:

Du(φψ) = (Duφ) ψ + φ (Duψ) (mod dt) (4.17)

Duf := u(f ) (4.18)

and

Du dt = 0 (mod dt). (4.19)

We write Di for D∂i and we set

Di dξ j = −dξk 0j ki (mod dt) (4.20)

for the coefficients of the connection. For an r-form φ with

φ = 1

r!
φi1···ir dξ i1 · · · dξ ir (mod dt)

we find

Dkφ = 1

r!
∇kφi1···ir dξ i1 · · · dξ ir (mod dt) (4.21)

where

∇kφi1···ir := ∂kφi1···ir − 0j ki1φj ···ir − · · · − 0j kir φi1···j . (4.22)

Extending these definitions as usual to tensor products we obtain

∇ib
jk := ∂ib

jk + b`(j0k)`i . (4.23)

In the following we demand the connection to be torsion free,i.e. 0i [jk] = 0, from which it
follows that

dφ = dξ i Diφ (mod dt). (4.24)

It should be emphasized here that in the context of the present non-commutative differential
calculus it is possible to develop systematically tensor analysis so that the introduction
of the above-mentioned concepts of a connection and covariant derivative (cf. equations
(4.17)–(4.20), (4.21)–(4.23)) is made perfectly rigorous. However, this would lead us far
away from our tasks of developing symplectic geometry and Hamiltonian dynamics and
therefore it will be presented in a subsequent paper. Let us also remark here that in the
old-fashioned index notation these differential geometric tools were first introduced in [41].

With the aid of these mappings and the • we define a new product in �:

φ ∧ ψ := φψ + (Diφ) (dξ
i • ψ)+ 1

2
dξk (∇kb

ij ) (∂i φ) dt (∂j ψ). (4.25)

It is easy to check that ∧ is right A-linear in both factors, i.e.

(φf ) ∧ (ψg) = (φ ∧ ψ)fg. (4.26)

Furthermore it can be shown that the product is associative and, as we shall see below, also
graded commutative, i.e. for φ ∈ �r and ψ ∈ �s

φ ∧ ψ = (−1)rsψ ∧ φ.
It is not difficult to show from the above definition that

φ ∧ f = φf f ∧ φ = f φ + df • φ = φf.
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We define now an operator

Df := df + 1

2
dξ i • Di df (4.27)

motivated by the fact that it satisfies the usual Leibniz rule

D(fg) = (Df )g + (Dg)f.

Note that because of this property the 1-forms

Dξ i := dξ i − 1

2
dt 0i (4.28)

transform right-covariantly under a change of coordinates ξ ′j = ξ ′j (ξ), i.e. we have
D′ξ ′j = Dξ i (∂iξ ′j ). Here we have set 0i := bjk0ijk . Clearly dt, Dξ 1, . . . ,Dξ 2n form
a local basis of �1 with

Df = Dξ i (∂if )+ dt (∂tf )

and

df = Df − 1

2
dt bij ∇i∂jf = Dξ i (∂if )+ dξ i (∂̃tf ) (4.29)

where

∂̃t f := ∂tf − 1

2
bij ∇i∂jf. (4.30)

The vector fields ∂̃t , ∂1, . . . , ∂2n form a local basis of X dual to the above basis of �1.
From the definitions we find

Dξ i Dξ j = dξ i dξ j + 1

2
dt dξ [i0j ] (4.31)

Dξ i ∧ Dξ j = Dξ i Dξ j + dt dξk b j̀0ik` − 1

2
dt dξk (∇kb

ij ) (4.32)

and using (4.14) we obtain

Dξ i ∧ Dξ j + Dξ j ∧ Dξ i = 0 dt ∧ Dξ i = dt dξ i

Dξ i ∧ dt = dξ i dt dt ∧ dt = dt dt = 0.
(4.33)

It is now easy to see, using (4.26) and (4.33), that ∧ is antisymmetric. With the aid of the
curvature of the connection 0,

Rijk` := ∂k0
i
j` − ∂`0

i
jk + 0imk0

m
j` − 0im`0

m
jk

and the curvature 2-form

�ij := 1

2
Rijk` dξk dξ` (mod dt)

we can prove the following useful formulae

D[iDj ]φ = −Rk`ij dξ` (∂k φ) (mod dt)

d Diφ − Di dφ = −�j i(∂j φ)+ dξ j 0kij Dkφ (mod dt)

£∂i φ = d(∂i φ)+ ∂i dφ = Diφ + dξk 0j ik(∂i φ) (mod dt)

and

d(dξ i • φ)− dξ i • dφ = −dt bij Djφ − dξ j 0ijk (dξ
k • φ).
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Using these one can prove (cf. [29], section 7) for φ ∈ �r and ψ ∈ �
d(φ ∧ ψ) = (dφ) ∧ ψ + (−1)rφ ∧ (dψ)−�j i (∂j φ) (dξ i • ψ)− dt bij (Diφ) (Djψ)

+1

2
dξk (∇kb

ij ) [(Diφ) dt (∂j ψ)+ dt (∂i φ) (Djψ)]

+1

2
dξk dξ` (∇k∇`b

ij ) (∂i φ) dt (∂j ψ). (4.34)

A special case of this formula is

d(φf ) = (dφ)f + (−1)rφ ∧ df − dt bij (Diφ) (∂jf )− 1

2
dt dξk (∇kb

ij ) (∂i φ) (∂jf ).

(4.35)

For a 1-form α = Dξ i αi + dt αt we find using (4.34)

dα = 1

2
Dξ i ∧ Dξ j ∂[iαj ]

+dt dξ i
[
∂tαi − ∂iαt − 1

2
bjk (∇j∇kαi + R`jkiα`)− 1

2
(∇ib

jk) (∇jαk)
]
.

To connect the above results to symplectic geometry and Hamiltonian dynamics we need
the exterior derivative of a 2-form ω. In general

ω = 1

2
Dξ i ∧ Dξ j ωij + dt dξ i ωi

(see (4.33) and the remark before (4.29)). Then a lengthy calculation gives

dω = 1

3!
Dξ i ∧ Dξ j ∧ Dξk

[
1

2
∂[iωjk]

]
+ 1

2
dt dξ i dξ j

[
∂tωij − ∂[iωj ]

−1

2
bk` (∇k∇`ωij − Rmk`[iωj ]m − Rmkijω`m)+ 1

2
(∇kω`[i ) (∇j ]b

k`)

]
.

(4.36)

Therefore a 2-form ω is closed if

∂[iωjk] = 0 (4.37)

and

∂tωij − ∂[iωj ] − 1

2
bk` (∇k∇`ωij − Rmk`[iωj ]m − Rmkijω`m)+ 1

2
(∇kω`[i ) (∇j ]b

k`) = 0.

(4.38)

If we now assume, as in ordinary symplectic mechanics, that ∂tωij = 0 then it can be
proved that (4.37) and (4.38) imply that ωi satisfies

∂[i (ωj ] + 1

2
bk` ∇|kω`|j ]) = 0 (4.39)

where only i, j are antisymmetrized. Therefore ω takes the form

ω = 1

2
Dξ i ∧ Dξ j ωij + dt dξ i

(
∂iH − 1

2
bk` ∇kω`i

)
for some function H . On the other hand (4.37) is the condition for ωij to be closed in
the ordinary exterior calculus; hence by Darboux’s theorem it can be brought locally to the
form

ωij = Jij J = (Jij ) =
(

0 I

−I 0

)
I = (δαβ) αβ = 1, . . . , n
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where J is the symplectic form in canonical coordinates. According to the interpretation
of ξ i in section 6 this can also be assumed in the present context. Therefore, to give our
results a more familiar form we write ω in this form:

ω = 1

2
Dξ i ∧ Dξ j Jij + dt dξ i

(
∂iH − 1

2
bk` ∇kJ`i

)
. (4.40)

However, the subsequent calculations do not make any use of the fact that the ξ i are taken
here to be canonical coordinates.

We already used the ‘insert’ operator in the sense of the classical differential calculus.
It is necessary to extend its definition in the present context, since it is needed in the
calculation of Hamiltonian vector fields. For X ∈ X , f ∈ A it is natural to put X f = 0
and as in the ordinary exterior calculus we set

X α := 〈X,α〉 X (φ ∧ ψ) := (X φ) ∧ ψ + (−1)rφ ∧ (X ψ) (4.41)

for α ∈ �1, φ ∈ �r and ψ ∈ �. If X = Xi ∂i + Xt ∂̃t in the coordinate system in which
ω has the form (4.40), we have X Dξ i = Xi and X dt = Xt . Therefore we find that

X ω = Dξ i
[−JijXj +Xt (∂iH + Fi)

] + dt Xi (∂iH + Fi) (4.42)

Fi := −(1/2)bjk ∇j Jki . (4.43)

In order to write ω in the form (4.40), it is necessary that it has maximal rank, which is 2n
since M × R is odd dimensional. Therefore it has a one-dimensional kernel given by the
relation

X ω = 0. (4.44)

In ordinary extended Hamiltonian mechanics H is the Hamiltonian† and the kernel is
identified by definition with the space of Hamiltonian vector fields X.

Equations (4.42) and (4.44) give

JijX
j = Xt (∂iH + Fi) Xi (∂iH + Fi) = 0. (4.45)

Setting J ij := Jij we have J ikJjk = δij , and hence the first equation gives

Xi = −XtJ ij (∂jH + Fj )

and consequently the second equation is identically satisfied. Therefore the Hamiltonian
vector field defined by H is given by

X = Xt
(
(∂iH + Fi)J

ij ∂j +
(
∂t − 1

2
bij ∇i∂j

))
. (4.46)

As in ordinary extended Hamiltonian dynamics, the equation of motion for an observable
A, i.e. for A ∈ A, takes the form XA = 0. By noticing that ∇i∂j = ∂i∂j − 0kij ∂k and
using J ikJjk = δij this gives, after some reductions,

∂tA = −
[
{H,A} + F̃iJ

ij ∂jA
]

+ 1

2
∂i(b

ij ∂jA)+ 1

2
bij0kki ∂jA (4.47)

where

F̃i := −1

2
∇j (bjkJki). (4.48)

† Notice that by (4.31) and (4.32), equation (4.40) is ω = (1/2) dξ i dξj Jij + dt dξ i ∂iH , strongly reminding
one of conventional extended Hamiltonian dynamics.
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The Hamiltonian equationis now identical with the general kinetic equation (2.5) for a
classical open system in interaction with a large bath at canonical equilibrium, provided
that

αij = 1

2
bij (4.49a)

F̃i = ∂iF (4.49b)

0kki = −β ∂iH (4.49c)

with {F,H } = 0.
In a simply connected phase space, condition (4.49b) is equivalent to ∂[i F̃j ] = 0 and

takes the form

∇[i ∇|k(bk`J`|j ]) = 0. (4.50)

To get an insight into the geometric meaning of this condition we may notice that in the
case where bij is non-degenerate and 0ijk its ‘metric’ connection (i.e. ∇kb

ij = 0), equation
(4.50) is equivalent to the condition that the symplectic formJij is harmonic with respect
to the Laplace–Beltrami operator ofbij (see, e.g., [35]). However, this is by no means
necessary in the context of the present formalism. In fact as will be seen in section 5,
b-compatibility of the connection is rather restrictive, ruling out interesting cases of well
known kinetic equations. Equation (4.49c) is equivalent to the condition that the canonical
measure

ε = e−βH dξ 1 · · · dξ 2n (mod dt) (4.51)

is covariantly constant: Diε = 0 (see, e.g., [36], p 215).
The above results can now be summarized by saying that if the phase space of a classical

open system 6 is endowed with a non-commutative geometrical structure, (4.4) and (4.5),
because of its interaction with a bath at canonical equilibrium, then the corresponding
Hamiltonian evolution of observables is identical to that given by conventional kinetic
theory if the canonical (Maxwell–Boltzmann) measure defined on 6 at the bath temperature
is covariantly constant and the symplectic form satisfies a ‘generalized harmonic’ condition
(4.50) (cf. the remark following it). Condition (2.3) is not expected to follow from the
procedure followed so far, unless a precise relation of (4.4) and (4.5) to conventional
dynamics is somehow made plausible. This will be considered in another paper.

5. Simple applications

Although an attempt to relate the present formalism to conventional dynamics will be made
elsewhere, we can easily illustrate our results by showing that well known simple kinetic
equations can be incorporated in it. To this end we notice that formally probability density
distributions f satisfy the adjoint of (4.47) which under (4.49b) reads

∂tf = {H + F, f } + 1

2
∂i(b

ij ∂jf − bij0kkjf ). (5.1)

To keep the presentation as simple as possible, we consider one-dimensional systems for
which bij is diagonal and independent of t and (ξ 1, ξ 2) = (q, p), i.e.

bij =
(
b1 0
0 b2

)
.
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Then a simple calculation using (4.48), (4.49b), and (4.49c) gives

02
21 = −β ∂qH − 01

11 01
12 = −β ∂pH − 02

22

b10
2

11 = −∂qF − b20
2

22 b20
1

22 = ∂pF − b10
1

11.
(5.2)

By taking account of (2.3) we are left with two unspecified components of the connection,
01

11, 0
2

22. When bij is degenerate but non-zero, e.g. b1 = 0, we still have two unspecified
components 01

11, 0
2

11. Finally direct application of (4.23) shows that connections
satisfying (5.2) are not b-compatible in general.

A first example falling into the range of applicability of the above model is the one-
dimensional Kramers equation mentioned in section 1, for a classical Brownian particle of
mass m in an external field V (q), i.e. with H = p2/2m+ V , and

∂tf = − p

m
∂qf + ∂qV ∂pf + γ

(
∂2
pf + β

m
∂p(pf )

)
. (5.3)

In this case b1 = F = 0, b2 = 2γ , so we get

02
22 = 01

22 = 0 01
12 = −β p

m
02

21 = −β ∂qV − 01
11 (5.4)

whereas 01
11, 0

2
11 remain unspecified.

It is well known that quantum kinetic equations can be given a phase-space
representation, using various methods. Therefore as a second example we may consider
the kinetic equation for a quantumoscillator of mass m and frequency ω weakly coupled
to a bath of harmonic oscillators at canonical equilibrium with temperature 1/β, which is
written in a coherent-state representation (antinormal ordered density matrix) as

∂tf = (1 − a){H, f } + 2mk

β

[
∂p (∂pf + βpf )+ ∂q

(
1

(mω)2
∂qf + βqf

)]
(5.5)

with H = p2/2m+mω2q2/2 and where a, k are ω-independent constants and k has been
written to lowest order in h̄, for simplicity†. This equation can be obtained in several
ways. The standard one is to apply to this system the general Markovian master equation
obtained from the Liouville–von Neumann equation for the system. However, one has to
use in this case the rather questionable rotating-wave approximation to the total Hamiltonian
to eliminate the so-called antiresonant terms representing simultaneous excitations or de-
excitations of the oscillator and some bath oscillator‡. Another more systematic method
is that of applying the general formalism of [13] and then passing to a coherent-state
representation ([44], ch III E). In fact this equation is the classical limit obtained via a
Wigner transformation of a special case of the general Fokker–Planck-type equation, studied
in [45]§. Actually it can also be obtained by applying the general formalism of [13] directly
to the corresponding classical Hamiltonian describing a harmonic oscillator coupled to a
harmonic chain with nearest-neighbour interactions [47].

In this case

b1 = k

βmω2
b2 = km

β
F = −aH.

† See, e.g., [43], equation (6.5.11), p 392, in connection with (6.2.59) and (6.4.37).
‡ See, e.g., [43], sections 6.1, 6.2—particularly p 336 and equation (6.2.34b).
§ Equation (4.5) together with table III; for details see [46], section 6.
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Therefore (5.2) gives

02
21 = −βmω2q − 01

11 01
12 = − β

m
p − 02

22

02
11 = βa(mω2)2

k
q − (mω)202

22 01
22 = − βa

km2
p − 1

(mω)2
01

11

(5.6)

and once again 01
11, 0

2
22 remain unspecified.

We may finally say that in both examples the connection is not flat, even in the case
where the above unspecified components of the connection vanish.

6. Discussion

In the previous section we have given geometric conditions so that Hamiltonian dynamics
in the context of non-commutative differential calculus defined on M × R by (4.4)–(4.6)
can be interpreted physically in terms of kinetic theory of classical open systems interacting
with a large bath at canonical equilibrium.

As already remarked at the end of section 3, the presentation so far is formal in the
sense that the nature of the algebra A and its corresponding coordinate representation in
terms of ξ i has not been specified. Here we discuss these questions further, but it should
be emphasized that this is not done rigorously. Actually much remains to be done for the
complete clarification of the problems addressed in this section.

At the beginning of section 4 we remarked that a 1-form α in the universal differential
envelope of the algebra of functions on a set N is a function α: N × N → C obtained by
the obvious extension of (4.1), that is of

(f d̃g h)(a, b) = f (a)[g(b)− g(a)]h(b). (6.1)

For the •̃ we can show that (6.1) implies

(d̃f1 •̃ · · · •̃ d̃fr) (a, b) = (f1(b)− f1(a)) · · · (fr(b)− fr(a)). (6.2)

Relations like α •̃β− d̃t b̃(α, β) = 0 are in general incompatible with the above prescription
for evaluating differential forms. Therefore if we do impose such relations (i.e. pass from
(�̃, d̃, •̃) to (�, d, •) as is outlined at the beginning of section 4) and at the same time we
still want to retain somehow an interpretation of • similar to that given by (6.2), then the
elements of �1 cannot be functions on the whole of N × N . In fact such relations induce
some structure on N × N by grouping together points of N which may be considered as
neighbouring. This is best illustrated by giving some examples.

Take N := R, the real line. Let x be the coordinate function on N and impose the
relation dx • dx − dx = 0 (cf. [42]). If we want to keep the interpretation of 1-forms
as functions on some set N1, this cannot be the whole of N × N . It is obvious that N1

must be that subset of N × N for which the imposed condition is satisfied identically. If
(a, b) ∈ N1 ⊂ N ×N then since x(a) = a we find

0 = (dx • dx − dx) (a, b) = (b − a)(b − a − 1).

Hence in order for (a, b) to be an element of N1 either b = a or b = a + 1. Hence
N1 = {(a, a), (a, a + 1)| a ∈ R}. This set gives a structure on the set N by specifying
which of its points are to be considered as neighbouring. Obviously the above condition
specifies a discrete structure on R. The possibility of evaluating a 1-form on (a, b) with a
and b not neighbours still arises, if b − a = m ∈ Z, and corresponds to the ‘integral’∫ b

a

α :=
m∑
k=1

α(a + k − 1, a + k).
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Applying the same reasoning to the relation df • dg = 0 with smooth functions f, g: R → C,
for a, b ∈ R, we find

(df • dg) (a, b) = (f (b)− f (a)) (g(b)− g(a)) = f ′(x1)g
′(x2)(b − a)2 = 0

where we have used the mean-value theorem. Since this condition must hold for all smooth
functions we must have ε := b − a and ε2 = 0. Now this relation becomes trivial since
ε must identically vanish. But the relation df • dg = [df, g] = 0 holds in the usual
differential calculus and consequently it cannot be trivial. In fact one may interpret the
relation ε2 = 0 as implying that ε is an infinitesimal of first order. In this sense R is again
structured since now N1 := {(a, a), (a, a+ ε)| a ∈ R}. For arbitrary a < b ∈ R the integral
is defined by ∫ b

a

α := lim
m∑
k=1

α(xk−1, xk) (6.3)

where this is obtained by taking the limit of vanishing width of the partition a = x0 < x1 <

· · · < xm = b of [a, b]. Now the relation df • dg = 0 integrated over [a, b] for arbitrary
a < b ∈ R gives

0 =
∫ b

a

df • dg = lim
m∑
k=1

(f (xk)− f (xk−1)) (g(xk)− g(xk−1)) (6.4)

which can be expressed by saying that the ‘quadratic variation’ of functions must vanish.
This is true if f, g are of bounded variation, a condition which is necessaryfor the Riemann–
Stieltjes integral

∫ b
a
g df to exist.

For a second-order calculus on smooth functions of one variable ξ , parametrizing
N := R, we have by definition (section 4, equation (4.7)) that df • dg • dh = 0; hence by
applying dξ •dξ •dξ = 0 on (a, b) ∈ R2 we get (ξ(b)− ξ(a))3 = 0. Thus ξ(b)− ξ(a) is an
infinitesimal of secondorder. Therefore N1 = {(a, a), (a, a + ε), (a, a + ε2)| a ∈ ξ−1(R)},
in this case and consequently for given a ∈ N we can move away from a in two ways,
either to a+ ε or to a+ ε2. In this sense then N becomes structured and can be considered
as two dimensional†.

For a < b ∈ R we define formally an integral as in (6.2) above. Applying this on
dξ • dξ • dξ = 0 we obtain

lim
m∑
k=1

(ξ(xk)− ξ(xk−1))
3 = 0 (6.5)

where again the limit is obtained as in (6.3). This relation can be expressed by saying that
the ‘cubic variation’ of ξ must vanish. It is perhaps of independent mathematical interest
to find equivalent characterizations of such functions.

Since the quadratic variation of ξ does not vanish in general, ξ cannot be the usual
coordinate function of R. Consequently we have R as a differentiable manifold but with
a differential structure which is not the standard one. If we set dt := (1/b) dξ • dξ with
some constant b and t a function on R, then by (2.5) dt • dt = 0 and hence t is of bounded
variation and can be taken to be the coordinate function on some copy of R. This additional
coordinate t realizes somehow the fact that N is two dimensional.

In the light of the above remark, if M = R2n, it seems that the ξ i should be interpreted
as local coordinates defined on R2n by an atlas Û not compatible with the usual one giving
the standard differential structure of R2n; that is, there are charts in Û not Ck-related to

† The equality N = R is only set theoretic.
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the identity mapping of R2n, for some k > 0. Equivalently we may say that the identity
mapping of R2n, does not belong to Û . More generally, for a 2n-dimensional differentiable
manifold M the above discussion implies that if ξ is a local chart of M in R2n and ξ̂ a
local chart of R2n from Û the functions f : M → C belonging to A are smooth functions
of ξ but are not smooth—not even of bounded variation—as functions of ξ̂ , that is f ◦ ξ−1

are smooth, but f ◦ (ξ̂ ◦ ξ)−1 are not.
The whole discussion in this section reminds us strongly of stochastic calculus on

manifolds developed in the context of semimartingale theory, in particular when stochastic
terms are given in terms of Wiener processes (see, e.g., [37], [38]). In fact there are many
results in stochastic calculus having an exact analogue in the formalism developed here.
As examples compare (4.8) with (4) in [38], p 134, and their properties, or elements of
X , equation (4.10), with the characterization of second-order fields in [38], lemma 6.1.
Moreover our relation of the ‘connection’ to the drift term in the general Fokker–Planck-
type kinetic equation (4.47) suggests a close relation with the interpretation in stochastic
calculus of a connection on a manifold as a mapping giving the ‘drift’ of a second-order
vector field ([37], pp 258, 259). In fact it seems possible—and this will be examined
elsewhere—that our present model of non-commutative geometry can be realized in the
context of stochastic calculus. However, whether this is the only possibility remains an
interesting—but to our knowledge, still unsolved—problem.
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